Week 14, Day 1

Divide 2-digit numbers by 1-digit numbers

 Each day covers one maths topic. It should take you about 1 hour or just a little more.1. If possible, watch the PowerPoint presentation with a teacher or another grown-up.

OR start by carefully reading through the Learning Reminders.

2. Tackle the questions on the Practice Sheet.

There might be a choice of either Mild (easier) or Hot (harder)!
Check the answers.

3. Finding it tricky? That's OK... have a go with a grown-up at A Bit Stuck?

4. Think you've cracked it? Whizzed through the Practice Sheets? Have a go at the Investigation...

Learning Reminders

Divide 2-digit numbers by 1-digit numbers (with remainders), using a 'compact' vertical layout.

Learning Reminders

Divide 2-digit numbers by 1-digit numbers (with remainders), using a 'compact' vertical layout.

Learning Reminders

Divide 2-digit numbers by 1-digit numbers (with remainders), using a 'compact' vertical layout.

Practice Sheet Mild
 Dividing with remainders

Use an empty number line or 'bus shelter' to solve these. Don't forget the remainder!

1. $63 \div 4$
2. $41 \div 3$
3. $51 \div 4$
4. $52 \div 3$
5. $62 \div 5$
6. $71 \div 5$
7. $53 \div 4$
8. $50 \div 3$

Challenge

Find 2 more division questions that give a remainder of 3 .

Practice Sheet Hot
 Dividing with remainders

Use an empty number line or 'bus shelter' to solve these. Don't forget the remainder!

1.	$62 \div 5$
2.	$71 \div 5$

Challenge
Find 3 more division questions that give a remainder of 4 .

Practice Sheets Answers

Dividing with remainders (mild)

1. $63 \div 4=15 \mathrm{r} 3$
2. $41 \div 3=13 \mathrm{r} 2$
3. $51 \div 4=12 \mathrm{r} 3$
4. $52 \div 3=17 \mathrm{rl}$
5. $62 \div 5=12 \mathrm{r} 2$
6. $71 \div 5=14 \mathrm{rl}$
7. $53 \div 4=13 \mathrm{rl}$
8. $50 \div 3=16 r 2$

Challenge

There are MANY possible answers, e.g. $78 \div 5,83 \div 10,75 \div 4$.

Dividing with remainders (hot)

1. $62 \div 5=12 \mathrm{r} 2$
2. $71 \div 5=14 \mathrm{rl}$
3. $53 \div 4=13 \mathrm{rl}$
4. $50 \div 3=16 \mathrm{r} 2$
5. $63 \div 3=21$
6. $81 \div 4=20 \mathrm{rl}$
7. $\quad 71 \div 6=11 \mathrm{r} 5$
8. $96 \div 4=24$
9. $70 \div 3=23 \mathrm{rl}$
10. $89 \div 6=14 \mathrm{r} 5$
11. $100 \div 3=33 \mathrm{rl}$
12. $101 \div 6=16 \mathrm{r} 5$

Numbers 5 and 8 have no remainder.

Challenge

There are MANY possible answers, e.g. $79 \div 5,84 \div 10,67 \div 7,124 \div 6$.

Work in pairs, but record your work on your own sheet.

. 0 to 100 beaded lines

- A pencil

Things you will need:

What to do:

- Use chunking to calculate the answers to these divisions.
- Remember to draw a big jump of 10 times the number you are dividing by. Then look to see how much is left.
- Calculate at least five answers.

$$
\begin{aligned}
& 38 \div 3 \\
& 64 \div 5 \\
& 50 \div 4 \\
& 76 \div 5 \\
& 43 \div 3 \\
& 72 \div 5 \\
& 61 \div 4
\end{aligned}
$$

S-t-r-e-t-c-h:
Draw your own number line jottings to calculate the answers.

Learning outcomes:

- I can use chunking on a beaded line to divide numbers just beyond the times tables (with remainders).
- I am beginning to draft my own number line jottings when using chunking (with remainders).

